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Abstract

In this paper, we present a method to render realistic
novel views from dark and blurry scenes by gaussian splat-
ting. 3D scene representation with Gaussian splats achieves
remarkable results. However, existing pipelines easily fail
in noisy and blurry images taken in low light. The existing
pipelines require point cloud and camera pose initialization
from COLMAP, which easily fails in dark and blurry scenes.
Also, the noise and blur of the frames create floating Gaus-
sians that degrade the rendering quality. To address this is-
sue, we propose efficiently initializing the camera poses and
point cloud using the depth map optimization method. We
additionally take advantage of depth map-based initializa-
tion by introducing a depth regularization loss in training
Gaussian splatting. We verify the proposed method on the
LOL-blur dataset and a few custom datasets of dark and
blurry scenes. Our approach demonstrates robust recon-
struction and geometrical consistency from low-quality im-
ages compared to the previous methods.

1. Introduction

Reconstructing 3D space from videos or images has been
a hot topic in the field of computer vision for a long
time. Recently, Neural Radiance Fields (NeRF) [9] have
shown that using synthetic neural networks, realistic novel
view synthesis can be achieved given sufficient comput-
ing power and sophisticated images. However, due to the
NeRF’s disadvantage of slow rendering speed, there has
been extensive research on alternatives to NeRF. 3D Gaus-
sian Splatting (3DGS) [7] has appeared with remarkable
reproduction quality and fast rendering speed, thus real-
time rendering can be achieved. 3DGS requires initializa-
tion through an SfM (Structure from Motion) model before
performing optimization. Traditional SfM models, such as
COLMAP [13], work by identifying common 3D keypoints

across multiple images and performing feature matching
based on these points. However, this approach has limi-
tations in performing on low-quality input images, such as
dark scenes containing noise and motion blur. We aim to
address these limitations and build a robust 3D scene recon-
struction from images taken in low-light conditions.

To handle the major challenges of dark scenes, we de-
cided to utilize various different method of initialization
and optimization of the gaussian splatting process. Instead
of using feature extraction, we match correspondence by
dense point tracking method based on optical flow esti-
mation, with an assumption of continuous frame inputs.
We compute the camera pose and point cloud by using a
deep-learning-based SfM model. Also, using optimization
method from a blur aware method, BAD-Gaussians[17],
we could extract sharp Gaussian splatting rendering from
blurry images. We furthermore introduce depth map regu-
larization loss, to take advantage of dense matching initial-
ization method, as well as handle the noisy inputs.

2. Related Work

Novel view synthesis Structure from motion (SfM) [16]
and Multi-view stereo (MVS) [15] are used frequently
to reconstruct the 3D scene with multiple images.
COLMAP [13] stands as the state-of-art SfM methods to
find the camera pose and sparse 3D keypoints consid-
ering the epipolar constraint [5] of images with various
views. More recently, neural-network-based 3D reconstruc-
tion methods have emerged to take advantage of highly de-
veloped deep-learning strategies. Among them, Neural ra-
diance fields (NeRF) [9] is one of the neural-network-based
methods which reconstruct the 3D scene with remarkable
quality. However, due to the structure of NeRF, slow render-
ing speed has prompted many researchers to make efforts
to achieve real-time rendering. Among them, 3D Gaussian
Splatting (3DGS) [7] presented with the fast and high qual-
ity with the alpha-blending rasterization. It uses Gaussian
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attenuated spherical harmonic splats as the primary prim-
itives. These splats, defined by their position, orientation,
and opacity, represent various parts of a scene with high de-
tail.

3D reconstruction using low-quality images 3D recon-
struction in low-quality environments is an even more chal-
lenging problem. Because it is not only difficult to find
3D keypoints, but also challenging to accurately calibrate
the camera poses. RawNeRF [10] enhances NeRF by us-
ing linear raw images for training, enabling high dynamic
range (HDR) view synthesis and robust scene reconstruc-
tion from extremely noisy images captured in low-light con-
ditions. However, this approach is slow and not stable
against noise. There are also several existing works on re-
constructing 3D gaussians from blurry frames [4] [12] [17].
BAD-Gaussians [17] is a novel approach that uses explicit
Gaussian representation to handle severe motion-blurred
images and inaccurate camera poses, achieving high-quality
scene reconstruction and real-time rendering, outperform-
ing previous deblur neural rendering methods. Furthermore,
this method splits a single low-quality image and its camera
pose into multiple sharp virtual images and a virtual camera
pose trajectory. So, it does not require highly accurate SfM
points initialization.

3. Method
3.1. Structure from Motion Initialization

We first process our video frames on CoTracker [6] to com-
pute the patch correspondences across the frames, rather
than extract image features such as SIFT. [8] CoTracker [6]
is one of the state-of-the-art point-tracking methods, based
on a transformer model that tracks dense points jointly
across a video sequence, considering their correlation.
Using the robust correspondence results as the input, we re-
place the original SfM method by using a neural network
based SfM method. Our method follows one of the existing
works, FlowMap [1], which operates SfM based on depth
map optimization by finetuning a pre-trained depth estima-
tor network and obtain SfM outputs as well as the optimized
depth maps of each frame. In this method, solving camera
intrinsics are done by selecting from the set of candidates
Kk which are obtained with a pinhole camera estimation
and discretized set of focal lengths. For each candidate,
the equation 2 was used to compute a corresponding set of
poses, then the equation 3 was used to compute the camera-
induced flow loss Lk. The resulting camera intrinsics K are
obtained with a softmin-weighted sum of the candidates,
with the assumption that K was shared across frames:

K =
∑
k

wkKk wk =
exp(−Lk)∑
l exp(−Ll)

(1)

Following this methodology, the depth maps Di and Dj

are back-projected with camera intrinsic Ki and Kj to gen-
erate point clouds Xi and Xj . The optical flow between
frames i and j to matched points in Xi and Xj yields X↔

i

and X↔
j , which are two filtered point clouds of correspond-

ing patches. To make the process of solving for the best-
aligned relative pose differentiable and closed-form, depth
map alignment should be cast as an orthogonal Procrustes
problem [2]. The formulation aims to find the rigid transfor-
mation that minimizes the total distance between matched
points:

Pij = argmin
P∈SE(3)

∥W1/2(X↔
j −PX↔

i )∥22, (2)

where the diagonal matrix W contains correspondence
weights. This problem is solved in closed form via singular
value decomposition. [2, 14] With the known correspon-
dence uij and obtained poses, re-projecting the transformed
3D points from the resulting point with the relative pose Pij

yields ûij . The overall camera-induced flow loss is the fol-
lowing:

L = ∥ûij − uij∥ (3)

3.2. Depth Regularization

For the depth regularization, we added the depth map reg-
ularization term, which is an L1 loss between the rendered
depth map and the pseudo ground truth depth map. The loss
function thus can be expressed as:

L = (1−λSSIM)Lrgb+λSSIMLSSIM+λscaleLscale+λdepthLdepth,
(4)

where Ldepth = ||Drender, DGT ||1. Following similar
methodology from previous works of sparse view NeRF and
3DGS method [11] [3], the depth map rendering is done by
alpha blending of depth as follows:

D =
∑
i∈N

diαiTi, (5)

where D is the rendered depth and di = (Ripi+Ti)z is the
depth of each splat from the camera with Ti =

∏i−1
j=1(1 −

αj), Ri ∈ R3x3 and ti ∈ R3 are the camera pose, pi is
the 3d point, and α is the opacity learned and multiplied by
the covariance of 2D Gaussian. The depth of Gaussians is
not a differentiable variable, so only alphas are affected by
the loss. Theoretically, the alpha of Gaussians that create
noisy spots in the depth map should decrease because of the
regularization term.

3.3. 3DGS robust to motion blur

Our method follows BAD-Gaussians [17] in the gaussian
splatting optimization, represent the process of creating an
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Figure 1. Overview. Processing Low-quality video frames processed through CoTracker [6] yields correspondence of patches. Training
from the pre-trained neural network by optimizing the correspondence loss outputs depth maps which are geometrically more reliable than
using other monocular depth map estimation methods. The floating Gaussians can be further handled by the usage of depth regularization
terms during the optimization process.

(a) rasterized depth map (b) ground truth depth map

Figure 2. Comparison of the rendered depth map and the pseudo
ground truth depth map that is optimized at the initialization pro-
cess.

image with the integration through the flow of virtual latent
sharp images. The integration is approximated by averaging
n discrete samples of virtual images Ct(u), as denoted:

B(u) ≈ 1

n

n−1∑
i=0

Ci(u). (6)

where B(u) ∈ RH×W×3 is the captured motion-blurred
image with u ∈ R2 as the pixel location in the image, and
Ct(u) ∈ RH×W×3 is the latent sharp image captured at
time t. The extent of motion blur depends on the cam-
era movement during the exposure time so slower move-
ment results in motion-blurred images, especially in low-
light scenarios with longer exposure times. In addition, the
blurred image B(u) is differentiable with respect to each
virtual sharp image Ci(u). For the equation (6), a virtual
sharp image Ct(u) can be rendered from a specified cam-
era pose Ti in the 3D-GS framework. To model the poses
of each images, BAD-Gaussians used a camera motion tra-
jectory with the linear interpolation between the start pose
Tstart ∈ SE(3) and the end pose Tend ∈ SE(3), therefore

the virtual camera pose at time t can be expressed as:

Tt = Tstart · exp
(
t

τ
log(T−1

start ·Tend)

)
, (7)

where τ represents the exposure time. The objective is to es-
timate both Tstart and Tend for each frame with the learn-
able parameters of Gaussians Gθ.

4. Experiment Results

From Figure 3, we can observe that the original 3DGS
shows noisy and aliased scene view. Our method renders
overall better results than previous methods. Figure 4 shows
the side viewpoint rendering quality of the scene. We found
some results that depth regularization shows better geom-
etry, which can be interpreted as depth map giving some
information of the relative 3D positions of Gaussians.

5. Limitations and Future Work

Despite the promising results, our current work has sev-
eral limitations that need to be addressed in future research.
Firstly, our method has not been sufficiently tested across
multiple datasets. This limits the generalizability of our
findings, as the robustness and performance of our ap-
proach under varying conditions and scenarios remain un-
verified. Secondly, our study lacks a comprehensive quan-
titative evaluation of metrics. Without detailed quantitative
analysis, it is challenging to fully assess the improvements
and the effectiveness of our proposed method compared to
existing approaches. To further enhance our method, future
work could consider the following aspects:
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(a) Original 3DGS (b) Original 3DGS

(c) Bad-Gaussians (d) Bad-Gaussians

(e) Ours (f) Ours

Figure 3. Experiment results. The left figures show the com-
pared results of a custom dataset of a dark kitchen scene, and
the right figures show the result of the bicycle scene of LOL-blur
dataset [18].

(a) side view with depth regulariza-
tion

(b) side view without depth regular-
ization

(c) front view with depth regulariza-
tion

(d) front view without depth regular-
ization

Figure 4. Rendered side views show that depth map based regu-
larization leads to better geometrical consistency, such as the han-
dle of the pot shown in the figure.

Rendering Brighter Images While Maintaining Color
Quality Improving the rendering process to produce

brighter images without compromising color fidelity could
significantly enhance the visibility and quality of features,
particularly in dark scenes.

Reducing Noise During the Correspondence Search Pro-
cess Implementing advanced noise reduction techniques
during the feature correspondence search could lead to more
accurate and reliable feature matching, thus improving the
overall performance of the SfM pipeline. Addressing these
limitations and exploring these future directions will be cru-
cial for refining our approach and validating its efficacy
across diverse and challenging visual conditions.

6. Conclusion
In this work, we addressed the significant challenges of
Structure-from-Motion (SfM) in dark and blurry scenes.
Traditional SfM methods, such as COLMAP [13], often fail
in these conditions due to the lack of reliable feature cor-
respondences. Our approach leverages Cotracker to iden-
tify more robust correspondences across video frames, sig-
nificantly enhancing performance in challenging environ-
ments. By utilizing a pre-trained network, we achieved a
slight but consistent improvement in the accuracy of camera
pose estimation, maintaining the quality of SfM-style out-
put parameters. The primary issue of noise and blur, often
manifesting as floating Gaussians in dark scenes, was miti-
gated through our implementation of a depth regularization
method. This method produced geometry-corrected depth
maps, effectively reducing the presence of noisy Gaussians.
Furthermore, we integrated a set of virtual sharp images
corresponding to each blurred frame, which allowed us
to account for camera motion during exposure. This was
modeled with a continuous trajectory in SE(3) space, en-
suring accurate pose estimation and robust 3D reconstruc-
tion. Our method demonstrates significant improvements
over traditional approaches, making it a valuable contri-
bution to the field of computer vision, particularly for ap-
plications requiring reliable SfM in adverse visual condi-
tions.
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